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Abstract
In this paper, we consider solutions of the sine-Gordon equation ∂2f

∂ξ∂η
−sin f =

0 that are nonlinear analogs of solutions sin
(
α + λξ − 1

λ
η
)

of the Klein–Gordon

equation ∂2f

∂ξ∂η
−f = 0. Just like the latter may be combined together by means

of the Fourier integral to form more complicated solutions of the Klein–Gordon
equation, the former may also interact to produce more complicated solutions
of the sine-Gordon equation by means of a nonlinear analog of the Fourier
integral also derived in the paper.

PACS numbers: 02.30.Ik, 02.40.Hw, 02.30.Jr, 05.45.Yv, 42.25.Bs, 47.35.Lf

(Some figures in this article are in colour only in the electronic version)

1. Sine-Gordon equation: soliton and breather solutions of the sine-Gordon equation

At the dawn of quantum mechanics, a wave was defined as a process that exhibits interference
and diffraction which require that a wave be spread out through space–time. At the same time, a
particle was defined to be a process that does not exhibit such behavior and can be described by
a motion of a point in the space–time. Although the Hamilton–Jacobi equations provide unified
mathematical description of both wave and particle motions, physically the two concepts have
been always distinguished. Even in quantum mechanics, the wave and particle aspects of
the motion of a wave particle are studied separately and then combined together to describe
the corresponding physical process. To much surprise the discovery of solitons provided
examples of particle-like solutions to the equations derived to describe wave-like behavior.
In [Kov1, Kov2, Kov3, Kov4] and references therein, the author and his collaborators showed
that at least some of such equations possess not only purely wave-like and purely particle-like
solutions but also solutions that combine the wave-like behavior of linear waves with the
particle-like behavior of solitons at the same–time. In this paper, we construct and study
wave-particle solutions for the sine-Gordon equation

∂2f

∂t2
− ∂2f

∂x2
+ sin f = 0, (sGtx)
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which can be also written as
∂2f

∂ξ∂η
− sin f = 0, (sGξη)

where x = η+ξ, t = η−ξ . We will show that the wave–particle solutions of the sine-Gordon
equation exhibit rather interesting properties not seen before.

The N-soliton solutions of the sine-Gordon equation are given by formula

f (x, t) = −2i ln
det(1 + g)

det(1 − g)
(mod 2π), (1.1a)

where g is an M × M matrix with entries

gmn = cn

μn + μm

e(μn+μm)ξ+ 1
4 ( 1

μn
+ 1

μm
)η

, m, n = 1, 2, . . . , M, (1.1b)

and μn, cn, n = 1, 2, . . . ,M, are some constants correspondingly called spectral parameters
and charges. The details of the derivation of (1.1) are given in [Nov1] as are the simplest
solutions of the sine-Gordon equation which we now review albeit with the terminology
somewhat more up-to-date than the terminology of [Nov1].

The simplest complex-valued solution of the sine-Gordon equation

f (x, t) = −2i ln
2μ + c e2μξ+ 1

2μ
η

2μ − c e2μξ+ 1
2μ

η
(mod 2π) (1.2)

obtained by taking M = 1 in (1.1) is called a soliton. Formulas (1.1) are often viewed
as nonlinear superposition of M solitons with spectral parameters μ1, . . . , μM and charges
c1, . . . , cM . For each soliton, one may construct an antisoliton by changing the sign of c1; the
nonlinear superposition of a soliton and its antisoliton is zero. We shall call special solitons

f = ∓2i ln
1 + e2(κα+κξ+ 1

4κ
η) cos ϕ + ie2(κα+κξ+ 1

4κ
η) sin ϕ

1 − e2(κα+κξ+ 1
4κ

η) cos ϕ − ie2(κα+κξ+ 1
4κ

η) sin ϕ
(mod 2π) (1.3a)

obtained from (1.1) by taking

M = 1, μ1 = κ > 0, c1 = ±2κ e2κα+ϕi, κα ∈ R, ϕ ∈ [0, π),

(1.3b)

correspondingly kinks (if the upper signs are taken) and antikinks (if the lower signs are taken).
Unless ϕ = 0, kinks and antikinks are nonsingular.

We shall call the real nonsingular solutions

f = ±4 arctan e2(κα+κξ+ 1
4κ

η) (mod 2π)

= ±4 arctan e2κα+0.5(
√

σ 2+1 x−σ t) (mod 2π), (1.4a)

obtained by taking ϕ = π
2 in (1.3) or

M = 1, μ1 = κ > 0, c1 = ±2iκ e2κα, κα ∈ R, σ = 4κ2 − 1

4κ
(1.4b)

in (1.2), correspondingly real kinks (if the upper signs are taken) and real antikinks (if the
lower signs are taken). Snapshots of a real kink and a real antikink are shown in figure 1. Note
that one may go from a real kink to its antikink and vice versa not only by alternating between
the upper to lower signs but also by changing the sign of ϕ i.e. going from ϕ = π

2 to ϕ = −π
2

and vice versa.
As κ → +∞ and α stays fixed or κ → 0 and α = α̃

4κ2 with fixed α̃, the real kink and real
antikink degenerate into weak solutions of the sine-Gordon equation
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Figure 1. Snapshots of a real kink and a real antikink.

Figure 2. Snapshots of a weak kink and a weak antikink.

f =

⎧⎪⎨⎪⎩
0, if α + ξ = α +

x − t

2
< 0

±2π, if α + ξ = α +
x − t

2
> 0

(mod 2π), (1.5a)

f =

⎧⎪⎨⎪⎩
0, if α̃ + η = α̃ +

x + t

2
< 0

±2π, if α̃ + η = α +
x + t

2
> 0

(mod 2π), (1.5b)

that we call correspondingly weak kinks (if the upper signs are taken) and weak antikinks
(if the lower signs are taken). Snapshots of a weak kink and a weak antikink are shown in
figure 2

The nonlinear superposition of M̃ weak kinks and antikinks amounts to plain
addition/subtraction and is given by a sum fw1(x − t) + fw2(x + t) of two step functions
fw1(x− t), fw2(x + t), each attaining values from the set 0,±2π,±4π,±6π, . . . of multiples
of 2π with the first function fw1(x− t) being a function of x − t only while the second function
fw2(x + t) is a function of x+t only. Each of the two functions satisfies sin f = 0 and is a weak
solution of ∂2f

∂t2 − ∂2f

∂x2 = 0, and thus may be viewed as a weak solution of the sine-Gordon
equation. The nonlinear superposition of M solitons and M̃ weak kinks and antikinks is given
by f = fsol + fw1(x − t) + fw2(x + t) with f = fsol given by (1.1) and fw1(x − t), fw2(x + t)

being as just described; the proof is a specific case of the proof of formula (2.3) given at the
end of appendix A.

We shall call the imaginary singular solutions

f = ±2i ln tanh

(
κα + κξ +

1

4κ
η

)
(mod 2π)

= ±2i ln tanh
2κα +

√
σ 2 + 1 x − σ t

2
(mod 2π), (1.6a)

3
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Figure 3. Snapshots of the imaginary parts of an imaginary kink and an imaginary antikink; the
real parts are zero.

obtained by taking ϕ = 0 in (1.3) or

M = 1, μ1 = κ > 0, c1 = ±2κ e2κα, κα ∈ R, σ = 4κ2 − 1

4κ
(1.6b)

in (1.2), correspondingly imaginary kinks (if the upper signs are taken) and imaginary antikinks
(if the lower signs are taken). Note that one may go from a imaginary kink to its antikink and
vice versa not only by alternating between the upper and lower signs but also by changing the
value of ϕ from ϕ = 0 to ϕ = π and vice versa. A snapshot of imaginary parts of a breather
and anti-breather is shown in figure 3.

The real nonsingular solutions of the sine-Gordon equation

f = ∓2i ln
λ cosh

[
κ
(
2β + 2ξ + 1

2(κ2+λ2)
η
)

+ iϕ
]

+ iκ sin λ
(
2γ + 2ξ − 1

2(κ2+λ2)
η
)

λ cosh
[
κ
(
2β + 2ξ + 1

2(κ2+λ2)
η
)

+ iϕ
]− iκ sin λ

(
2γ + 2ξ − 1

2(κ2+λ2)
η
) (mod 2π)

(1.7a)

obtained from (1.1) by taking

M = 2, μ1 = κ + iλ, μ2 = κ − iλ,

c1 = ±2κ(κ + iλ)

λ
e2(κβ+λγ i)+ϕ i, c2 = ∓2κ(κ − iλ)

λ
e2(κβ−λγ i)+ϕ i, (1.7b)

κ > 0, λ > 0, κβ ∈ R, λγ ∈ R, ϕ ∈ [0, π),

are called correspondingly breathers (if the upper signs are taken) and antibreathers (if the
lower signs are taken).

The special real case of (1.7)

f = ∓2i ln
λ cosh κ

(
2β + 2ξ + 1

2(κ2+λ2)
η
)

+ iκ sin λ
(
2γ + 2ξ − 1

2(κ2+λ2)
η
)

λ cosh κ
(
2β + 2ξ + 1

2(κ2+λ2)
η
)− iκ sin λ

(
2γ + 2ξ − 1

2(κ2+λ2)
η
) (mod 2π)

= ±4 arctan
κ sin λ

(
2γ + 2ξ − 1

2(κ2+λ2)
η
)

λ cosh κ
(
2β + 2ξ + 1

2(κ2+λ2)
η
) (mod 2π)

= ±4 arctan
κ sin

(
2λγ + λω√

λ2+κ2
x − λ

√
ω2+1√

λ2+κ2
t
)

λ cosh
(
2κβ + κ

√
ω2+1√

λ2+κ2
x − κω√

λ2+κ2
t
) (mod 2π), (1.8)

where ω = 4κ2+4λ2−1
4
√

κ2+λ2
, called correspondingly real breathers (if the upper signs are taken)

and real antibreathers (if the lower signs are taken), is obtained by taking ϕ = 0 in (1.7).
Snapshots of a real breather and antibreather are shown in figure 4.

4
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Figure 4. Snapshots of a real breather and a real antibreather.

Figure 5. Snapshots of the imaginary parts of an imaginary breather; the real part is zero.

The only singular breathers

f = ∓2i ln
λ sinh κ

(
2β + 2ξ + 1

2(κ2+λ2)
η
)

+ κ sin λ
(
2γ + 2ξ − 1

2(κ2+λ2)
η
)

λ sinh κ
(
2β + 2ξ + 1

2(κ2+λ2)
η
)− κ sin λ

(
2γ + 2ξ − 1

2(κ2+λ2)
η
) (mod 2π)

= ∓2i ln
λ sinh

(
2κβ + κ

√
ω2+1√

λ2+κ2
x − κω√

λ2+κ2
t
)

+ κ sin
(
2λγ + λω√

λ2+κ2
x − λ

√
ω2+1√

λ2+κ2
t
)

λ sinh
(
2κβ + κ

√
ω2+1√

λ2+κ2
x − κω√

λ2+κ2
t
)− κ sin

(
2λγ + λω√

λ2+κ2
x − λ

√
ω2+1√

λ2+κ2
t
) (mod 2π),

(1.9)

where ω = 4κ2+4λ2−1
4
√

κ2+λ2
, called correspondingly imaginary breathers (if the upper signs are taken)

and imaginary antibreathers (if the lower signs are taken), are obtained by taking ϕ = π
2 in

(1.7). A snapshot of an imaginary breather is shown in figure 5.
Solutions (1.7), including special cases (1.8), (1.9), are superpositions of two complex-

valued solitons (1.2) generated by two charges c1, c2 in the μ-plane. By analogy with
electrostatic theory we may consider the limiting case of (1.7) as the distance 2λ between the
charges in the μ-space goes to zero while the value of the charges c1, c2 = −c1 increases at
the order of 1

λ
. The limiting case gives us

f = ∓2i ln
cosh

[
κ
(
2β + 2ξ + 1

2κ2 η
)

+ iϕ
]

+ iκ
(
2γ + 2ξ − 1

2κ2 η
)

cosh
[
κ
(
2β + 2ξ + 1

2κ2 η
)

+ iϕ
]− iκ

(
2γ + 2ξ − 1

2κ2 η
) (mod 2π), (1.10)

which, again by analogy with electrostatic theory, we call solitonic dipoles. A more detailed
description of solitonic dipoles is given in [Wu1] albeit under a different name.

Another limiting case of (1.7)

f = ∓2i ln
λ
(
2β + 2ξ + 1

2λ2 η
)

+ sin λ
(
2γ + 2ξ − 1

2λ2 η
)

λ
(
2β + 2ξ + 1

2λ2 η
)− sin λ

(
2γ + 2ξ − 1

2λ2 η
) (mod 2π)

= ∓2i ln
(2λβ +

√
ω2 + 1 x − ωt) + sin(2λγ + ωx −

√
ω2 + 1 t)

(2λβ +
√

ω2 + 1 x − ωt) − sin(2λγ + ωx −
√

ω2 + 1 t)
(mod 2π), (1.11)

5
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Figure 6. Time evolution of the negative of the imaginary part (if ) of a harmonic breather with
λ = 3, β = γ = 0 and a snapshot of the negative of the imaginary part (if ) of the oscillating tail
of a harmonic breather with λ = 3, β = 15, γ = 0.

where ω = 4λ2−1
4λ

, is obtained by taking ϕ = π
2 (which actually gives us (1.9)) and letting

κ → 0. We shall call (1.11) harmonic breathers; they were first introduced in [Beu1] and
further studied in [And1] albeit under a different name.

Breathers (1.7) as well as their limiting cases (1.10) vary in shape depending on the values
of κ and λ but all exhibit exponential decay as x → ±∞. Time of evolution of the imaginary
part of a typical harmonic breather is shown in figure 6.

6
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Harmonic breathers, however, decay much slower as x → ±∞; the rate of decay at ±∞
provides harmonic breathers with rather interesting properties that we shall study in this paper.

Note that the frequencies of breathers (1.7) as well as the limiting cases (1.10) (1.11) may
be changed by a Lorentz transformation

(
t

x

)
=
( 1√

1−v2 − v√
1−v2

− v√
1−v2

1√
1−v2

)(
t ′

x ′

)
(1.12a)

(
ω√

1 + ω2

)
=
( 1√

1−v2 − v√
1−v2

− v√
1−v2

1√
1−v2

)(
ω′√

1 + (ω′)2

)
. (1.12b)

2. Superposition formula for solitons and harmonic breathers: properties of
multi-harmonic breather solutions

Just like superposition of M solitons is described by (1.1) superposition of N harmonic breathers
and M kinks/antikinks is described by

f (x, t) = −2i ln
det K+

det K−
(mod 2π), (2.1a)

where K± is an (N + M) × (N + M) symmetric matrix with the entries

K± nm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δmnBn + (1 − δmn)
sin (�n − �m)

λn − λm

± sin (�n + �m)

λn + λm

, for n,m = 1, 2, . . . , N,

√
μn eAn

μ2
n + λ2

m

[
1 ∓ 1

2
(λm cos �m − μn sin �m) +

1 ± 1

2
(μn cos �m + λm sin �m)

]
for n = N + 1, N + 2, . . . , N + M, m = 1, 2, . . . , N,

the same as the previous line with n and m interchanged,

for n = 1, 2, . . . , N, m = N + 1, N + 2, . . . , N + M,

±1

4
δnm +

√
μnμm

2(μn + μm)
eAn+Am for n,m = 2N + 1, 2N + 2, . . . , 2N + M,

(2.1b)

and

An = μnαn +
ϕn

2
i + μnξ +

1

4μn

η = μnαn +
ϕn

2
i +

4μ2
n + 1

8μn

x − 4μ2
n − 1

8μn

t,

Bn = βn + ξ +
1

4λ2
n

η = βn +
4λ2

n + 1

8λ2
n

x − 4λ2
n − 1

8λ2
n

t, (2.1c)

�n = λnγn + λnξ − 1

4λn

η = λnγn +
4λ2

n − 1

8λn

x − 4λ2
n + 1

8λn

t,

λn > 0, βn ∈ R, γn ∈ R, μn > 0, αn ∈ R, ϕn ∈ [0, 2π),

η = x + t

2
, ξ = x − t

2
.

The j th diagonal element describes a real kink, a real antikink, an imaginary kink or an
imaginary antikink if the value of ϕj is correspondingly π

2 , −π
2 , 0, π .

7
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The superposition of M kinks/antikinks, M̃ weak kinks/antikinks and N harmonic
breathers is given by

f (x, t) = −2i ln
det K+

det K−
+ fw1(x − t) + fw2(x + t) (mod 2π), (2.2)

where K± are the same as in (2.1) and fw1(x − t), fw2(x + t) are two step functions attaining
values from the set 0,±2π,±4π, . . . ,±2Mπ of multiples of 2π with the first function
fw1(x − t) being a function of x−t only while the second function fw2(x + t) being a function
of x + t only. The derivation of (2.1) and (2.2) is given in appendix A.

As a special case of (2.1), we obtain that the superposition of N harmonic breathers with
no solitons present is given by

f (x, t) = −2i ln
detK+

detK−
(mod 2π), (2.3a)

where K± is an N × N symmetric matrix with entries

K± nm = δmnBn + (1 − δmn)
sin (�n − �m)

λn − λm

± sin (�n + �m)

λn + λm

, (2.3b)

and

Bn = βn + ξ +
1

4λ2
n

η = 2λnβn +
√

ω2
n + 1 x − ωn t

2λn

,

�n = λnγn + λnξ − 1

4λn

η = 2λnγn + ωnx −√
ω2

n + 1 t

2
, (2.3c)

λn > 0, βn ∈ R, γn ∈ R, η = x + t

2
, ξ = x − t

2
, ωn = 4λ2

n − 1

4λn

.

Each solution (2.3) has 2N singularities for each value of t; the proof is given in
appendix B. Away from the singularities, the entries of K± in (2.3) are dominated by
Bn = βn + ξ + 1

4λ2
n
η and detK± ≈ ∏N

n=1

(
βn + ξ + 1

4λ2
n
η ± sin 2�n

2λn

)
; hence

−2i ln
detK+

detK−
≈ −2i ln

N∏
n=1

βn + ξ + 1
4λ2

n
η + sin 2�n

2λn

βn + ξ + 1
4λ2

n
η − sin 2�n

2λn

≈ −2i
N∑

n=1

sin 2�n

λnβn + λnξ + 1
4λn

η
.

Thus, sufficiently far away from their singularities functions (2.3) satisfy

f (x, t) ≈ −2i
N∑

n=1

sin 2�n

λnβn + λnξ + 1
4λn

η
(mod 2π)

= −4i
N∑

n=1

sin
(
2λnγn + ωn x −√

ω2
n + 1 t

)
2λnβn +

√
ω2

n + 1 x − ωn t
(mod 2π). (2.4a)

If |x|, |t | are restricted to a region whose size is much smaller than all |βn|, then estimate
(2.4a) may be further simplified to

f (x, t) ≈ −2i
N∑

n=1

1

λnβn

sin
(
2λnγn + ωn x −

√
ω2

n + 1 t
)

(mod 2π). (2.4b)

Functions (2.3) also exhibit the phenomenon of nonlinear interference very similar to
its linear namesake. Specifically, if K± is given by (2.3b), γm = γ(λm) where γ(λ) is a C1

function of λ, then as λm → λm−1,

detK± → det K̃±, (2.5a)

8
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where K̃± is obtained from K± by removing the mth row and mth column, and replacing βm−1

with

β̃m−1 =
βm βm−1 −

[
d
(
λmγ (λm)

)
dλm

]2

βm + βm−1 − 2
d
(
λmγ (λm)

)
dλm

,

the latter is equivalent to

1

β̃m − d(λmγ(λm))

dλm

= 1

βm − d(λmγ(λm))

dλm

+
1

βm−1 − d(λm−1γ(λm−1))

dλm−1

. (2.5b)

Formula (2.5) shows that for a given function γ (λ), the superposition of two harmonic
breathers with λ1 = λ2, γ1 = γ2 and β1 + β2 − 2 d(λγ(λ))

dλ
|λ=λ1 = 0 is 0(mod2π) suggesting

that such breathers may be viewed as annihilators of each other, the same way as solitons and
antisolitons, and hence represent a harmonic breather and its harmonic antibreather; which
one of the two is harmonic breather and which is harmonic antibreather is a matter of choice.

Formulas (2.5) also suggest that asymptotics (2.4) be replaced correspondingly with

f (x, t) ≈ −4i
N∑

n=1

sin
(
2λnγn + ωn x −√

ω2
n + 1 t

)
2λnβn − 2λn

d(λnγ(λn))

dλn
+
√

ω2
n + 1 x − ωn t

(mod 2π). (2.6a)

f (x, t) ≈ −2i
N∑

n=1

1

λnβn − λn
d(λnγ(λn))

dλn

sin(2λnγn + ωn x −
√

ω2
n + 1 t) (mod 2π), (2.6b)

provided supλ�0

∣∣ d(λγ(λ))

dλ

∣∣ is much smaller than all |βn|. Formula (2.6b) provides a Fourier
series approximation to the solutions (2.3) away from the singularities. Asymptotics (2.6)
suggest the use of harmonic breathers as building blocks to construct more complicated
solutions of the sine-Gordon equation similarly to how the trigonometric functions are used to
construct more complicated functions by means of the Fourier transform. Such construction
may use either the left or right oscillating tails of harmonic breathers to modulate functions
on a finite space-time domain |x| < X, |t | < T , as long as the singularities are sufficiently
far away from the domain.

Since both left and right tails may be used for modulations, one may try to use both. One
way to do it would be to consider superpositions of an even number 2N of harmonic breathers
with

λ2n−1 − λ2n very small, γ(λ) ∈ C1([0, +∞)),

λ2n−1γ2n−1 = λ2n−1γ(λ2n−1), λ2nγ2n = λ2nγ(λ2n) +
π

2
,

β2n−1 = ρ(λ2n−1)

λ2n−1 − λ2n

+
d(λγ(λ))

dλ
, β2n = − ρ(λ2n)

λ2n−1 − λ2n

+
d(λγ(λ))

dλ
,

max
λ�0

∣∣∣∣∣d
(
λγ(λ)

)
dλ

∣∣∣∣∣ 	 inf
λ�0

ρ(λ), (2.7a)

where

ρ(λ) ∈ C1([0, +∞)), ρ(λ) > 0. (2.7b)

We shall call a superposition of 2N harmonic breathers subject to (2.7) a double layer.
If minλ�0 ρ(λ) > 0 and |λ1 − λ2| is sufficiently small, then the corresponding double layer

9
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has a region close to the origin; we shall call it core, where modulation is also possible. In
the core (or any other region sufficiently far away from the singularities where ρ(λ1)

|λ1−λ2| ,
1

|λ1−λ2|
are much larger than all other terms), we may estimate a double layer composed of only two
breathers as

f (x, t) = −2i ln

det

∣∣∣∣∣ B1 + sin 2�1
2λ1

sin(�1−�2)

λ1−λ2
+ sin(�1+�2)

λ1+λ2
sin(�1−�2)

λ1−λ2
+ sin(�1+�2)

λ1+λ2
B2 + sin 2�2

2λ2

∣∣∣∣∣
det

∣∣∣∣∣ B1 − sin 2�1
2λ1

sin(�1−�2)

λ1−λ2
− sin(�1+�2)

λ1+λ2
sin(�1−�2)

λ1−λ2
− sin(�1+�2)

λ1+λ2
B2 − sin 2�2

2λ2

∣∣∣∣∣
≈ −2i ln

det

∣∣∣∣∣ B1 + sin 2�1
2λ1

− 1
λ1−λ2

+ cos 2�1
2λ1

− 1
λ1−λ2

+ cos 2�1
2λ1

B2 − sin 2�1
2λ1

∣∣∣∣∣
det

∣∣∣∣∣ B1 − sin 2�1
2λ1

− 1
λ1−λ2

− cos 2�1
2λ1

− 1
λ1−λ2

− cos 2�1
2λ1

B2 + sin 2�1
2λ1

∣∣∣∣∣
≈ −2i ln

B1B2 − (B1 − B2)
sin 2�1

2λ1
− 1

(λ1−λ2)2 + cos 2�1
λ1(λ1−λ2)

B1B2 + (B1 − B2)
sin 2�1

2λ1
− 1

(λ1−λ2)2 − cos 2�1
λ1(λ1−λ2)

≈ −2i ln
λ1[ρ(λ1)

2 + 1] + (λ1 − λ2)[ρ(λ1)sin 2�1 − cos 2�1]

λ1[ρ(λ1)2 + 1] − (λ1 − λ2)[ρ(λ1)sin 2�1 − cos 2�1]

= −2i ln
λ1

√
ρ(λ1)2 + 1 + (λ1 − λ2) sin

(
2�1 − arctan 1

ρ(λ1)

)
λ1

√
ρ(λ1)2 + 1 − (λ1 − λ2) sin

(
2�1 − arctan 1

ρ(λ1)

)
≈ −4i

(λ1 − λ2) sin
(
2�1 − arctan 1

ρ(λ1)

)
λ1

√
ρ(λ1)2 + 1

. (2.8a)

The evolution of a harmonic couple is shown in figure 7. The shape of the core is practically
indistinguishable from that of the corresponding trigonometric function.

If ρ(λ1) 
 1, the asymptotic (2.8) coincides with the asymptotic obtained from (2.6).
Asymptotic (2.8) suggests that a more general double layer solution of the sine-Gordon
equation satisfies

f (x, t) ≈ −4i
N∑

n=1

(λ2n−1 − λ2n) sin
(
2�2n−1 − arctan 1

ρ(λ2n−1)

)
λ2n−1

√
ρ(λ2n−1)2 + 1

. (2.8b)

3. Examples of modulation by harmonic breathers/couples

In this section, we provide examples of modulation by the tails of harmonic breathers and
the cores of harmonic couples using correspondingly asymptotics (2.6) and (2.8). Note that
outside the intervals of modulation shown on the graphs below the solutions eventually develop
singularities.

In the first example shown in figure 8, we construct a solution of the sine-Gordon equation
whose initial profile is very similar to a multiple of the Dirac δ-function. Note that there can
be no solution of the sine-Gordon equation whose initial profile is exactly a multiple of
the δ-function for the construction of such a solution would require sin[Cδ(x)] to be well
defined at least for some nonzero constant C which, of course, is not the case. Since
away from the singularities solutions (2.3) asymptotically behave like (2.4b), the sought
solution of the sine-Gordon equation must be asymptotically proportional to the Fourier series

10
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Figure 7. Time evolution and a snapshot of negative of the imaginary part (if ) of the oscillatory
core of a double layer composed of only two harmonic breathers with λ1 = −0.15, λ2 =
−0.1515, β1 = 50, β2 = −50, γ1 = 0, γ2 = π

2 .

2
π

lim�λ→0
[
�λ

∑+∞
n=0 cos 2λnx

]
approximating Fourier integral 1

π

∫ +∞
−∞ cos 2λx dλ = δ(x).

Motivated by this, we define�ω = 0.12, ω2n−0.5 = (2n−0.5)�ω, ω2n = 2n�ω, ω2n−1 =
(2n − 1)�ω and choose the parameters in (2.3) to be

λ2n−1 =
√

ω2
2n−0.5 + 1 − ω2n−0.5

2
− 0.2

⎡⎣
√

ω2
2n + 1 − ω2n

2
−
√

ω2
2n−1 + 1 − ω2n−1

2

⎤⎦ ,

λ2n−1 =
√

ω2
2n−0.5 + 1 − ω2n−0.5

2
+ 0.2

⎡⎣
√

ω2
2n + 1 − ω2n

2
−
√

ω2
2n−1 + 1 − ω2n−1

2

⎤⎦ ,

11
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Figure 8. An approximation to the initial profile similar to the δ(x)-function.

γ2n−1 = π
4λ2n−1

, γ2n = 3π
4λ2n

, β2n−1 = 105
λ2n−1

, β2n = − 300
λ2n

with 1 � n � N = 100.
The graph of the negative of the imaginary part of the so-obtained solution of the sine-
Gordon equation at t = 0 is shown in the top portion of figure 8. The little horns pointing
down both on the left and right of the big spike in the middle is the nonlinear analog
of the Gibbs phenomenon; they are eliminated by replacing formulas for β2n−1, β2n with
β2n−1 = 105

λ2n−1
· 2N

2N−2n+0.5 , β2n = − 300
λ2n

· 2N
2N−2n+0.5 . The obtained graph is shown in the bottom

portion of figure 8.
Similarly we may construct the solutions of the sine-Gordon equation whose initial

profile is similar to f0(x) = {1, if |x|>2,

0, if |x|<2.
. Since away from the singularities solutions

(2.3) asymptotically behave like (2.4b), the sought solution of the sine-Gordon equation
must be asymptotically proportional to the Fourier series 2

π
lim�λ→0

∑+∞
n=0

�λ sin 4λn cos 2λnx

λn

approximating Fourier integral 2
π

∫ +∞
−∞

sin 4λ cos 2λx
λ

dλ = f0(x). Motivated by this, we define
�ω = 0.02, ω2n−0.5 = (2n − 0.5)�ω, ω2n = 2n�ω, ω2n−1 = (2n − 1)�ω and choose
the parameters in (2.3) to be

λ2n−1 =
√

ω2
2n−0.5 + 1 + ω2n−0.5

2
− 0.2

⎡⎣
√

ω2
2n + 1 + ω2n

2
−
√

ω2
2n−1 + 1 + ω2n−1

2

⎤⎦ ,

λ2n−1 =
√

ω2
2n−0.5 + 1 + ω2n−0.5

2
+ 0.2

⎡⎣
√

ω2
2n + 1 + ω2n

2
−
√

ω2
2n−1 + 1 + ω2n−1

2

⎤⎦ ,

γ2n−1 = π
4λ2n−1

, γ2n = 3π
4λ2n

, β2n−1 = 15(2n−1)

λ2n−1 sin[2(2n−1)�ω] , β2n = − 30n
λ2n sin[4n�ω] with

1 � n � N = 400. The negative of the imaginary part of the graph of the so-obtained
solution of the sine-Gordon equation at t = 0 is shown in the first two pictures of figure 9;
the second picture is just a more detailed version of the first one. The spikes pointing up and
down at x = ±2 is the Gibbs phenomenon; they are eliminated by replacing formulas for
β2n−1, β2n with β2n−1 = 15(2n−1)

λ2n−1 sin[2(2n−1)�ω] · 2N
2N−2n+0.5 , β2n = − 30n

λ2n sin[4n�ω] · 2N
2N−2n+0.5 . The

obtained graph is shown in the third picture of figure 9.
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Figure 9. Approximations to the step function f0(x) =
{

1 if |x|>2

0 if |x|<2
.

Figure 10. Sketch of a typical space–time domain of modulation.

As already mentioned in the beginning of this section, as we proceed to either left or
right from the origin the solutions shown in figures 8 and 9 eventually develop singularities.
However, the interval where the modulation is valid is sufficiently large; since in applications
intervals are never of infinite length, a sufficiently large interval of modulation is practically
as good as R. In space–time, the modulation is valid in a strip of the form shown in figure 10;
the exact values of X and T depend on the functions modulated.

Although the profiles shown in figures 8 and 9 have extremely short lifespan, their decay
is fairly slow. Figure 11 shows time evolution of the profile shown in figure 8, as can be seen
the profile decays into a wave packet that still exists at time t = ±500. Figure 12 shows time

13
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Figure 11. Time evolution of the profile shown in figure 8.

evolution of the profile shown in figure 9, as can be seen the profile decays much faster than
the previous one.

One may construct solutions of the sine-Gordon equation with a relatively long lifespan.
An example of one such solution, obtained by taking N = 100, �ω = 0.08, ω0 = 8, ωn =
ω0 + �ω(n− 50.5), λn = ωn+

√
ω2

n+1
2 , β0 = 168, βn = (−1)n

β0

λn
· e0.06(ωn−ω0)

2
, γ2n−1 = 0,

γ2n = π
2 , is shown in figure 12. The wave packet preserves its shape for |t | < 30, shows

significant changes only at t ∼ ±100 and does not completely disperse even at t ∼ 1500.
Reducing the values of λ, we may extend the lifespan of the wave packet even further.

4. Sine-Gordon universes

Since the sine-Gordon equation is odd in f , if a function f (x, t) satisfies the sine-
Gordon equation so does −f (x, t). A singular non-zero solution of the sine-

14
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Figure 12. Time evolution of the profile shown in figure 9.

Gordon equation f (x, t) with S singularities at xs1(t), xs2(t), xs3(t), . . . , xsS(t), xs1(t) �
xs2(t) � xs3(t) � · · · � xsS(t) is regular on each of the intervals (−∞, xs1(t)),

(xs1(t), xs2(t)), (xs2(t), xs3(t)), . . . , (xsS−1(t), xsS(t)), (xsS(t), +∞). Multiplying function
f (x, t) by −1 or 0 on one of the intervals produces another solution of the sine-Gordon
equation; the procedure allows us to generate 3S+1 distinct solutions (including the zero
solution). Thus, for any two consecutive singularities xsk(t), xsk+1(t), of f (x, t), we may
construct a solution

f̃ (x, t) =
{
f (x, t), if xsk(t) < x < xsk+1(t),

0, otherwise.

Such solutions are singular but compactly supported, somewhat akin to the compacton
solutions studied in [Ros1] and references therein. For example, if we take the double
layer shown in figure 7 and zero it on the left of the left singularity and on the right
of the right singularity, we obtain a rather intersecting solution shown in figure 14 with a

sin(ω1x −
√

ω2
1 + 1 t)-like core, ω1 = 4λ2

1−1
4λ1

for −T < t < T for some T. Such solutions

behave similarly to sin(ω1x −
√

ω2
1 + 1 t) in the sense that they exhibit similar properties like

interference and diffraction, yet they are compactly supported; in the spirit of [Ros1], we shall
call such solutions basic compactons.

Let f (x, t) be a solution of the sine-Gordon equation describing a modulation akin to the
ones illustrated in figures 8, 9, 11 and 12 and let xs−(t), xs+(t) denote correspondingly the
first singularity on the left and the first singularity on the right from the domain of modulation.
Due to the argument just given without any loss of generality, we may assume that f (x, t) = 0
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Figure 13. Time evolution of a modulated wave.

Figure 14. Snapshot of a singular compacton.

for x < xs−(t) and x > xs+(t), in which case the solution has the structure shown in
figure 15 for −T < t < T for some T. As t evolves from −T to T, both xs−(t) and xs+(t) also
evolve as does the form of f (x, t) on the interval xs−(t) < x < xs+(t). We call such a solution
a sine-Gordon universe.

Sine-Gordon universes are only defined for −T < t < T , where T is a number whose exact
value depends on the function f (x, t). Once |t | > T , the singularities of the solution eventually
catch up with the modulated profile destroying it. As shown in figures 11–13, the evolution
of a sine-Gordon universe consists of two stages: the first ‘contracting’ stage −T < t < 0 at
which the solution focuses and the second ‘expanding’ stage 0 < t < T at which the solution
disperses. A typical sine-Gordon universe may be constructed as a nonlinear superposition
of basic compactons; each basic compacton moves with a speed whose absolute value is less
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Figure 15. Snapshot of a sine-Gordon universe.

than 1. Sine-Gordon universes are comprised of basic compactons just like physical matter is
comprised of elementary particles or solutions

∫ +∞
−∞ f̂ (ω) ei(ωx−

√
ω2+1 t) dω of the linear Klein–

Gordon equation ∂2f

∂t2 − ∂2f

∂x2 +f = − ∂2f

∂ξ∂η
+f = 0 are comprised of functions ei(ωx−

√
ω2+1 t). As

far as applications to the real world problems are concerned, functions ei(ωx−
√

ω2+1 t) have no
singularities but extend all the way to ±∞ while the basic compactons do have singularities
but are compactly supported; we may say that the singularities of basic compactons are the
price we pay for compact support just like the infinite spread of ei(ωx−

√
ω2+1 t) is the price we

pay for their smoothness and lack of singularities.
We may introduce a sine-Gordon universe with particles moving with speed ±1 by taking

a superposition of harmonic breathers plus a sum of integer multiples of weak kinks, each
weak kink moving with the speed ±1. Just like the massless neutrinos of the real physics
practically do not interact with physical matter, the weak kinks or their superpositions do not
interact with the sine-Gordon matter.

We may also introduce a sine-Gordon universe with analogs of physical black holes by
taking a superposition of harmonic breathers and imaginary kinks/antikinks, each imaginary
kink/antikink being a sine-Gordon analog of a physical black hole.

Although the similarity of the solutions of the sine-Gordon equation to the physical models
of the Universe is quite curious, it is doubtful it might be of use as the sine-Gordon equation
is too simplistic to be considered a meaningful approximation of the Einstein equations of
general relativity. What is of interest here though is what happens to the sine-Gordon universes
as time goes to ±∞. Passing through the focusing point at t = 0, the sine-Gordon universes do
not collapse to a point but rather disperse into chaos losing any kind of meaningful structure.
Rephrasing the words of [Lon1], one may describe the evolution of the sine-Gordon universes
with the words ‘chaos thou art, to chaos returnest’ making us wonder whether the Big Bang
theory should be replaced with the ‘chaos thou art, to chaos returnest’-theory [Lon1].

5. Conclusion

In this paper, we discussed a class of explicit singular solutions of the sine-Gordon equation

∂2f

∂ξ∂η
= sin f sG

given by (1.11); we call them harmonic breathers. Although as shown in section 1 harmonic
breathers may be obtained as limiting cases of two-soliton solutions their structure is richer than
that of solitons and other soliton-like solutions. Whereas the solitons and soliton-like solutions
move like particles, the distinctive property of harmonic breathers is that they combine both

17



J. Phys. A: Math. Theor. 42 (2009) 495207 M Kovalyov

particle- and wave-like motions: their singularities move like particles while the tails exhibit
wave-like behavior. The latter is best explained by comparing sG with Klein–Gordon equation

∂2f

∂ξ∂η
= f. KG

The most elementary solutions of KG are

sin

(
2λγ + 2λξ − 1

2λ
η

)
, (5.1)

and they serve as building blocks for solutions of KG in the form of Fourier sums∑
n

f̃ (λn) sin

(
2λnγ (λn) + 2λnξ − 1

2λn

η

)
�λn, (5.2)

where λ1, λ2, λ3, . . . are some positive numbers, γ (λ), f̃ (λ) are some functions and
�λn = λn+1 − λn. Limits of Fourier sums with appropriately chosen parameters are solutions
of KG in the form of Fourier integrals∫ +∞

0
f̃ (λ) sin

(
2λγ (λ) + 2λξ − 1

2λ
η

)
dλ. (5.3)

Since, at least for small f , sG may be viewed as a perturbation of KG by the term sin f − f

we may expect at least some properties of KG and its solutions to be carried over to sG and
its solutions.

Indeed as shown in section 3, harmonic breathers may be viewed as the sG analogs of
(5.1) whereas the tails of the solutions of sG given by (2.3) or the cores of the solutions of sG
given by (2.3) subject to (2.7) may be viewed as the sG analogs of (5.2). As demonstrated
in section 3 just like sufficiently generic solutions of KG may be approximated by Fourier
sums (5.2), sufficiently generic solutions of sG may be approximated by the tails of solutions
of sG given by (2.3) or by the cores of solutions given by (2.3) and (2.7). That said we may
view formula (2.3) as nonlinear superposition of harmonic breathers given by the diagonal
elements of (2.3) just like (5.2) is often viewed as linear superposition of solutions (5.1).
Moreover, just like we construct solutions of KG in the form of Fourier integrals (5.3), we
may construct analogous solutions of sG by taking limits of solutions given by (2.3) with
appropriately chosen parameters; so defined solutions of sG may be viewed as nonlinear
superpositions of infinitely many harmonic breathers with each harmonic breather providing
only an infinitesimal contribution to the whole just like Fourier integrals (5.3) are viewed
as linear superpositions of basic KG solutions (5.1) with each sin

(
2λγ (λ) + 2λξ − 1

2λ
η
)

dλ

providing only an infinitesimal contribution to (5.3). Just like the phenomenon of linear
interference guarantees the existence of KG solutions (5.3), the phenomenon of nonlinear
interference given by (2.5) assures the existence of sG analogs of (5.3). It is rather remarkable
as, unlike KG, sG is a nonlinear equation, yet it possess nonlinear structures similar to
summation, integration and interference.

As remarkable as is the similarity in the behavior of the solutions of sG and KG is the
difference between them given the fact that the KG is the linearization of sG near f = 0. One
difference is that the harmonic breathers have singularities whereas (5.1) do not. Although
viewed by some researchers as something to avoid, singularities usually indicate the boundaries
of the validity of a mathematical model thus indicating where the mathematical model fails to
describe the phenomenon it is intended to describe.

Another difference between the sG and KG is that the former also possesses soliton
solutions whereas the latter does not; the place of harmonic breathers in the realm of solitons
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and soliton-like solutions of sG is discussed in section 1 whereas the interaction of harmonic
breathers with solitons and soliton-like solutions of sG is given by (2.1).

The very existence of such diversity of solitons and soliton-like solutions of sG suggests
adding them to harmonic breathers as building blocks or ‘particles’ to form more general
solutions of sG. We did in section 4 where we considered solutions of sG which we called
‘sin-Gordon universes’; they exhibit many properties of the physical Universe. One of them is
the time expansion of sine-Gordon universes as t → +∞, yet it is not a time expansion from
a big bang but a time expansion from chaos. Even though we do not claim any relationship
of sine-Gordon universes with the physical Universe, section 4 does provide food for thought
as to whether the physical Universe started from a big bang or from chaos like sine-Gordon
universes.
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Appendix A. Derivation of the superposition formula for solitons and harmonic
breathers

To obtain the formula, we consider a special case of (1.1)

f (x, t) = −2i ln
det(1 + g)

det(1 − g)
(mod 2π), (A.1a)

where g is an (2N + M) × (2N + M) matrix with entries

gmn = cn

μn + μm

e2μnξ+ 1
2μn

η
, m, n = 1, 2, . . . , 2N + M, (A.1b)

and for n = 1, 2, . . . , N

μ2n−1 = κ + iλn, μ2n = κ − iλn,

c2n−1 = 2iκ(κ + iλn)

λn

e2(κβn+λnγn i), c2n = −2iκ(κ − iλn)

λn

e2(κβn−λnγni), (A.1c)

κ > 0, λn ∈ R, κβn ∈ R, λnγn ∈ IR,

while for n = 2N + 1, 2N + 2, . . . , 2N + M

cn = 2μn e2μnαn+ϕi. (A.1d)

Note that here we do not require that for n = 2N + 1, 2N + 2, . . . , 2N + M ,
μn > 0, αn ∈ R, ϕ ∈ [0, 2π) as in (2.1c); these conditions are not required for the
derivation of formula (2.1b) and are assumed only for further use in the text.

One may rewrite (1.1) as

f (x, t) = −2i ln
det G+

det G−
(mod 2π), (A.2a)
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where G± are (2N + M) × (2N + M) matrices of the form

G± =
(

G±bb G±bs

G±sb G±ss

)
, (A.2b)

G±bb are 2N × 2N matrices made of 2 × 2 blocks(
G±bb, 2n−1 2m−1 G±bb, 2n−1 2m

G±bb, 2n 2m−1 G±bb, 2n 2m

)

=
(

δmn ± 2iκ(κ+iλn)

λn(2κ+iλn+iλm)
e2(Bn+i�n) ± 2iκ(κ+iλn)

λn(2κ+iλn−iλm)
e2(Bn+i�n)

∓ 2iκ(κ−iλn)

λm(2κ−iλn+iλm)
e2(Bn−i�n) δmn ∓ 2iκ(κ−iλn)

λm(2κ−iλn−iλm)
e2(Bn−i�n)

)
(A.2c)

with n,m = 1, 2, . . . , N ; G±bs are 2N × M matrices made of 2 × 1 blocks(
G±bs, 2n−1 m

G±bs, 2n m

)
=
(± 2iκ(κ+iλn)

λn(κ+iλn+μm)
e2(Bn+i�n)

∓ 2iκ(κ−iλn)

λn(κ−iλn+μm)
e2(Bn−i�n)

)
(A.2d)

with n = 1, 2, . . . , N, m = 2N + 1, 2N + 2, . . . , 2N + M; G±sb are M × 2N matrices made
of 1 × 2 blocks

(G±sb, n 2m−1 G±sb, n 2m) =
(

± 2μn

μn + κ + iλm

e2An ± 2μn

μn + κ − iλm

e2An

)
(A.2e)

with n = 2N + 1, 2N + 2, . . . , 2N + M, m = 1, 2, . . . , N ; G±ss are M × M matrices made
of 1 × 1 blocks

G±ss, nm = δnm ± 2μn

μn + μm

e2An (A.2f )

with n,m = 2N + 1, 2N + 2, . . . , 2N + M and

An = μnαn +
ϕn

2
i + μnξ +

1

4μn

η

Bn = κ

(
βn + ξ +

1

4
(
κ2 + λ2

n

)η)

�n = λn

(
γn + ξ − 1

4
(
κ2 + λ2

n

)η) .

(A.2g)

Multiplying G± on the left-hand side by

Hl = diag

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

± e−i�1√
κ

ei�1√
κ

∓e−i�1 ei�1

)
, . . . ,

(
± e−i�N√

κ

ei�N√
κ

∓e−i�N ei�N

)
,
√

κ, . . . ,
√

κ︸ ︷︷ ︸
Mdiagonal
entries

√
κ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and on the right-hand side by

Hr = −1

2
diag

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(± ei�1√

κ
∓ei�1

e−i�1√
κ

e−i�1

)
, . . . ,

(± ei�N√
κ

∓ei�N

e−i�N√
κ

e−i�N

)
,

1√
κ

, . . . ,
1√
κ︸ ︷︷ ︸

M diagonal
entries 1√

κ

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,
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we obtain for small κ

f (x, t) = −2i ln
det Kκ+

det Kκ−
(mod 2π), (A.3a)

where Kκ± are (2N + M) × (2N + M) matrices of the form

Kκ± =
(

Kκbb± Kκbs±
Kκsb± Kκss±

)
, (A.3b)

Kκbb± are 2N × 2N matrices made up of 2 × 2 blocks(
Kκbb±, 2n−1 2m−1 Kκbb±, 2n−1 2m

Kκbb±, 2n 2m−1 Kκbb, 2n 2m

)

=

⎛⎜⎜⎜⎝
−2δmn

[
e2Bn −1

κ
± e2Bn sin 2�n

λn

]
− 4(1 − δmn)

[
e2Bn+i(�n−�m)

i(λn−λm)+2κ

− e2A−i(�n−�m)

i(λn−λm)−2κ
± e2Bn+i(�n+�m)

i(λn+λm)+2κ
± e2Bn−i(�n+�m)

i(λn+λm)

]
+ O(κ) O(

√
κ)

O(
√

κ) 4δmn + O(κ)

⎞⎟⎟⎟⎠ (A.3c)

with n,m = 1, 2, . . . , N ; Kκbs± are 2N × M matrices made up of 2 × 1 blocks(
Kκbs±, 2n−1 m

Kκbs±, 2n m

)
=
(

2i(κ+iλn) e2Bn+i�n

λn(κ+iλn+μm)
± 2i(κ−iλn) e2Bn−i�n

λn(κ−iλn+μm)

O(
√

κ)

)
(A.3d)

with n = 1, 2, . . . , N, m = 2N + 1, 2N + 2, . . . , 2N + M; Kκsb± are M × 2N matrices made
up of 1 × 2 blocks

(Kκsb±, n 2m−1 Kκsb±, n 2m) =
(

2μn e2An+i�m

μn + κ + iλn

∓ 2μn e2An−i�m

μn + κ − iλn

O(
√

κ)

)
(A.3e)

with n = 2N + 1, 2N + 2, . . . , 2N + M, m = 1, 2, . . . , N ; Kκss± are M × M matrices with
entries

Kκss±, nm = δnm ± 2μn

μn + μm

e2An (A.3f )

with n,m = 2N + 1, 2N + 2, . . . , 2N + M . Here O(
√

κ), O(κ) denote correspondingly
terms proportional to

√
κ and κ .

As κ → 0, the terms O(
√

κ) → 0, O(κ) → 0,(
Kκbb±, 2n−12m−1 Kκbb±, 2n−12m

Kκbb±, 2n2m−1 Kκbb, 2n2m

)
→

(
−4δmn

[
βn + ξ + 1

4λ2
n
η
]

− 2(1 − δmn)
2 sin (�n−�m)

λn−λm
± 2 sin (�n+�m)

λn+λm
0

0 4δnm

)
,

(
Kκbs±, 2n−1m

Kκbs±, 2nm

)
→

(
− 2 ei�n

μm+iλn
∓ 2 e−i�n

μm−iλn

0

)
,

(Kκsb±, n2m−1 Kκsb±, n2m ) →
(

2μn e2An+i�m

μn+iλn
± 2μn e2An−i�m

μn−iλn
0
)

,

entries of the columns and rows with even indices 2n become 4δmn and hence can be dropped
without affecting the values of the determinants, and formulas (A.3) become

f (x, t) = −2i ln
det K0+

det K0−
(mod 2π), (A.4a)

21



J. Phys. A: Math. Theor. 42 (2009) 495207 M Kovalyov

where K0± is an (N + M) × (N + M) matrix with the entries

K0± nm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δmn

[
βn + ξ +

1

4λ2
n

η

]
+ (1 − δmn)

sin (�n − �m)

λn − λm

± sin (�n + �m)

λn + λm

for n,m = 1, 2, . . . , N,

1

μ2
m + λ2

n

[
1 ± 1

2
(μm cos �n + λn sin �n)−

i
1 ∓ 1

2
(λn cos �n − μm sin �n)

]
for n = 1, 2, . . . , N, m = N + 1, N + 2, . . . , N + M,

− μn e2An

μ2
n + λ2

m

[
1 ± 1

2
(μn cos �m + λm sin �m)−

i
1 ∓ 1

2
(λm cos �m − μn sin �m)

]
for n = N + 1, N + 2, . . . , N + M, m = 1, 2, . . . , N,

− 1

4
δnm ∓ μn

2(μn + μm)
e2An for n,m = 2N + 1, 2N + 2, . . . , 2N + M.

(A.4b)

Introducing

K1± = H−1
0 K0±H0, (A.5)

where H0 = diag
{

1, 1, . . . , 1︸ ︷︷ ︸
Nones

, i
√

μ1 eA1 , i
√

μ2 eA2 , . . . , i
√

μM eAM
}

we can rewrite (A.4)

as

f (x, t) = −2i ln
det K1+

det K1−
(mod 2π), (A.6a)

where K1± are (N + M) × (N + M) symmetric matrices with the entries

K1± nm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δmn

[
βn + ξ +

1

4λ2
n

η

]
+ (1 − δmn)

sin (�n − �m)

λn − λm

± sin (�n + �m)

λn + λm

,

for n,m = 1, 2, . . . , N,
√

μn eAn

μ2
n + λ2

m

[
1 ∓ 1

2
(λm cos �m − μn sin �m) +

i ± i

2
(μn cos �m + λm sin �m)

]
for n = N + 1, N + 2, . . . , N + M, m = 1, 2, . . . , N,

the same as the previous line with n and m interchanged,

for n = 1, 2, . . . , N, m = N + 1, N + 2, . . . , N + M,

− 1

4
δnm ∓

√
μnμm

2(μn + μm)
eAn+Am for n,m = 2N + 1, 2N + 2, . . . , 2N + M.

(A.6b)

One may further simplify (A.6) by multiplying K1+ both on the left-hand side and on the
right-hand side by H1 = diag

{
1, 1, . . . , 1︸ ︷︷ ︸

Nones

, −i, −i, . . . , −i︸ ︷︷ ︸
Mi

}
. That gives us

f (x, t) = −2i ln
det K+

det K−
(mod 2π), (A.7a)
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where K+ = H1K1+H1, K− = K1+ are (N + M) × (N + M) symmetric matrices with the
entries

K± nm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δmn

[
βn + ξ +

1

4λ2
n

η

]
+ (1 − δmn)

sin (�n − �m)

λn − λm

± sin (�n + �m)

λn + λm

,

for n,m = 1, 2, . . . , N,√
μn eAn

μ2
n + λ2

m

[
1 ∓ 1

2
(λm cos �m − μn sin �m) +

1 ± 1

2
(μn cos �m + λm sin �m)

]
for n = N + 1, N + 2, . . . , N + M, m = 1, 2, . . . , N,

the same as the previous line with n and m interchanged,

for n = 1, 2, . . . , N, m = N + 1, N + 2, . . . , N + M,

±1

4
δnm +

√
μnμm

2(μn + μm)
eAn+Am for n,m = 2N + 1, 2N + 2, . . . , 2N + M.

(A.7b)

Formulas (A.4) and (A.6) describe nonlinear superposition of N harmonic breathers and
M kinks/antikinks, the latter in terms of symmetric matrices.

To obtain the formula for superposition of M kinks/antikinks, M̃ weak kinks/antikinks
and N harmonic breathers consider (1.7) with M + M̃ kinks/antikinks

f̃ (x, t) = −2i ln
det K̃+

det K̃−
(mod 2π), (A.8a)

K̃± nm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δmn

[
βn + ξ +

1

4λ2
n

η

]
+ (1 − δmn)

sin (�n − �m)

λn − λm

± sin (�n + �m)

λn + λm

,

for n,m = 1, 2, . . . , N,√
μn eAn

μ2
n + λ2

m

[
1 ∓ 1

2
(λm cos �m − μn sin �m) +

1 ± 1

2
(μn cos �m + λm sin �m)

]
for n = N + 1, N + 2, . . . , N + M + M̃, m = 1, 2, . . . , N,

the same as the previous line with n and m interchanged,

for n = 1, 2, . . . , N, m = N + 1, N + 2, . . . , N + M + M̃,

±1

4
δnm +

√
μnμm

2(μn + μm)
eAn+Am for n,m = 2N + 1, 2N + 2, . . . , 2N + M + M̃,

(A.8b)

ϕn =

⎧⎪⎨⎪⎩
π

2
for a real kink,

π

2
for a real antikink,

for n = N + M + 1, . . . , N + M + M̃. (A.8c)

pick a j ∈ {N + M + 1, . . . , N + M + M̃} and let μj → +∞ while keeping αj fixed. Then,

det K̃± = [± 1
4 + 1

4 e2Aj
]

det ˜̃K± + terms of order o(e2Aj ), where ˜̃K± are matrices obtained
from K̃± by deleting the j th row and j th column. Hence,

lim
μj →+∞ f̃ (x, t) = −2i ln

det ˜̃K+

det ˜̃K−
+ lim

μj →+∞

[
−2i ln

1 + e2Aj

−1 + e2Aj

]
(mod 2π)

= −2i ln
det ˜̃K+

det ˜̃K−
+ lim

μj →+∞

[
−2i ln

1 + e2Aj

1 − e2Aj

]
(mod 2π)

= −2i ln
det ˜̃K+

det ˜̃K−
+

{
0, if αj + ξ < 0
4ϕj , if αj + ξ > 0

(mod 2π).

23



J. Phys. A: Math. Theor. 42 (2009) 495207 M Kovalyov

Similarly, we obtain that if μj → +0 while keeping αj = α̃j

μ2
j

with fixed α̃j ,

lim
μj →+∞ f̃ (x, t) = −2i ln

det ˜̃K+

det ˜̃K−
+

{
0, if α̃j + η < 0

4ϕj , if α̃j + η > 0
(mod 2π).

Taking limits as μj → +∞ or μj → +0 for all j ∈ {N + M + 1, . . . , N + M + M̃}, we
obtain

lim
all μj approach

+∞ or +0

f̃ (x, t) = −2i ln
det K+

det K−
+ fw1(x − t) + fw2(x + t) (A.9)

where K± are the same as in (1.7b) or (2.1) and fw1(x − t), fw2(x + t)are two step functions
attaining values from the set 0,±2π,±4π, . . . ,±2Mπ of multiples of 2π with the first
function fw1(x − t) being a function of x − t only while the second function fw2(x + t) is a
function of x + t only.

Formula (2.1) may also be obtained by utilizing the Darboux transform well described in
[Mat1]. As shown in [And1], the superposition of M solitons may be written as

f (x, t) = 2

i
log

det �

det �
, (A.10a)

where � and � are M × M matrices

� =

⎛⎜⎜⎜⎝
ϕ1 ϕ2 ϕ3 · · ·

μ1ψ1 μ2ψ2 μ3ψ3 · · ·
μ2

1ϕ1 μ2
2ϕ2 μ2

3ϕ3 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎠ , � =

⎛⎜⎜⎜⎝
ψ1 ψ2 ψ3 · · ·

μ1ϕ1 μ2ϕ2 μ3ϕ3 · · ·
μ2

1ψ1 μ2
2ψ2 μ2

3ψ3 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎠ , (A.10b)

ϕn = μn

∏
k =n

μn + μk

μn − μk

e−μnξ +
icn

2
eμnξ ψn = μn

∏
k =n

μn + μk

μn − μk

e−μnξ − icn

2
eμnξ . (A.10c)

Then,

1 + g = diag

⎧⎨⎩eμ1ξ
∏
k =1

(μ1 − μk), . . . , eμMξ
∏
k =1

(μM − μk)

⎫⎬⎭�
−1�

× diag

{
1

μ1
∏

k =1(μ1 + μk)
, . . . ,

1

μM

∏
k =1(μM + μk)

}
, (A.11a)

1 − g = diag

⎧⎨⎩eμ1ξ
∏
k =1

(μ1 − μk), . . . , eμMξ
∏
k =1

(μM − μk)

⎫⎬⎭�
−1�

× diag

{
1

μ1
∏

k =1(μ1 + μk)
, . . . ,

1

μM

∏
k =1(μM + μk)

}
, (A.11b)

where

� =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 · · · , 1
μ1 μ2 · · · μM

μ2
1 μ2

2 · · · μ2
M

...
... · · · ...

μM−1
1 μM−1

2 · · · μM−1
M

⎞⎟⎟⎟⎟⎟⎟⎠
is the van der Monde matrix.
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Once the relationships (A.11) are established one may easily switch between
representations (A.10) and (1.1). Since formulas (2.1) are obtained as special limiting cases
of (1.1), we obtain the relationship between (2.1) and its Darboux transform analog by taking
appropriate limits of (A.11).

Appendix B. How to count the number of singular points for the solutions given by (2.1)
and (2.3)

In this appendix, we will show how to count the number of singular points of the solutions of
the sine-Gordon equation given by formulas (2.1) and (2.3). The value of t is assumed to be
fixed but arbitrary and the dependence on t is suppressed in the notation.

Let us begin with the simpler case of the solutions given by (2.3). Define

rank±(x) = the dimension of the largest linear subspace on which

K± is positive definite (B.1)

and

h±(x, t,v) = vK±vT =
N∑

n,m=1

K±nmvmvn =
N∑

n=1

(
βn +

4λ2
n + 1

8λ2
n

x − 4λ2
n − 1

8λ2
n

t

)
v2

n

+
N∑

n,m=1
n =m

sin(�n − �m)

λn − λm

vmvn ±
N∑

n,m=1

sin(�n + �m)

λn + λm

vmvn, (B.2)

where v = (v1, v2, . . . , vN) is an N-dimensional real row vector and vT is its transpose. Since
for all

v,
∂h±(x, t,v)

∂x
= ∂

∂x

N∑
n,m=1

K±nmvmvn

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N∑
n=1

(cos �nvn)
2 +

(
sin �n

2λn

vn

)2

> 0, when the upper signs are taken,

N∑
n=1

(sin �nvn)
2 +

(
cos �n

2λn

vn

)2

> 0, when the lower signs are taken,

functions rank±(x) are increasing step functions assuming only integer values. But for |x|
sufficiently large, h±(x, t, v) ∼ x

∑N
n=1

4λ2
n+1

4λ2
n

v2
n and thus

rank±(x) =
{

0, for x < 0 and|x| sufficiently large,
N, for x > 0 and |x| sufficiently large.

Consequently rank±(x) may only assume values 0, 1, . . . , N and must make N unit
jumps at some points denoted correspondingly by x1±(t), x2±(t), . . . , xN±(t), these are
the singular points of f (x, t) given by (2.3). For some values of t, some of the points
x1±(t), x2±(t), . . . , xN±(t) may confluence.

Let us now consider the solutions of the sine-Gordon equation given by (2.1) with the
requirement that
for all n = N + 1, N + 2, . . . , N + M1 + M2, μn > 0,

for n = N + 1, N + 2, . . . , N + M1, ϕn = 0,

for n = N + M1 + 1, N + M1 + 2, . . . , N + M1 + M2, ϕn = π

2
,

for n = N + M1 + M2 + 1, . . . , N + M1 + M2 + M3, ϕn = π

4
or

5π

4
.

(B.3)
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Conditions (B.3) essentially describe a superposition of N harmonic breathers, M1 imaginary
kinks, M2 imaginary antikinks and M3 real kinks/antikinks. Let M = M1 + M2 + M3.

Define V to be the set of (N + M)-dimensional row-vectors v =
(v1, v2, . . . , vN , vN+1, vN+2, . . . , vN+M1+M2+M3) with all vn real; V1 to be the subspace
of V comprised of vectors v = (v1, v2, . . . , vN , vN+1, . . . , vN+M1+M2 , 0, 0, . . . , 0, 0︸ ︷︷ ︸

M3zeros

)

and V2 to be the subspace of V comprised of vectors v =
(0, 0, . . . , 0, 0︸ ︷︷ ︸

N+M1+M2
zeros

, vN+M1+M2+1, vN+M1+M2+2, . . . , vN+M1+M2+M3). Also define K̃± = HϕK±Hϕ

where Hϕ = diag
{

1, 1, . . . , 1︸ ︷︷ ︸
Nones

, e−iϕN+1 , e−iϕN+2 , . . . , e−iϕN+M1+M2

}
.

Conditions (B.3) assure that K̃±V1 is real, i.e. the coordinates of K̃±v,v ∈ V1 are real,
but K̃±V2 is complex non-real, i.e. the coordinates of K̃±v,v ∈ V1,v = 0 are not real; that
in turn implies that exactly N + M1 + M2 eigenvalues of K̃± are real and M3 eigenvalues of
K̃± are complex nonzero. The singularities of solutions (2.1) are the points where the real
eigenvalues of K̃± become zero. Define

rank±(x) = the dimension of the largest linear subspace of V

on which K̃± is positive definite (B.4)

and

h±(x, t,v) = vK̃±vT =
N+M1+M2+M3∑

n,m=1

K̃±nmvmvn =
N∑

n=1

(
βn +

4λ2
n + 1

8λ2
n

x − 4λ2
n − 1

8λ2
n

t

)
v2

n

+
N∑

n,m=1
n =m

sin(�n − �m)

λn − λm

vmvn ±
N∑

n,m=1

sin(�n + �m)

λn + λm

vmvn

± 0.25
N+M1+M2+M3∑

n=N+1

e−2iϕnv2
n +

N+M1+M2+M3∑
n,m=N+1

√
μnμm

2(μn + μm)
eAn+Am−iϕn−iϕmvmvn

+ (1 ∓ 1)

N+M1+M2+M3∑
m=N+1

N∑
n=1

√
μm eAm−iϕm

μ2
m + λ2

n

(λm cos �n − μm sin �n)vmvn

+ (1 ± 1)

M1+M2+M3∑
m=N+1

N∑
n=1

√
μm eAm−iϕm

μ2
m + λ2

n

(μm cos �n + λn sin �n)vmvn (B.5)

where vT is the transposed of v.
Since

Im[h±(x, t, v)] = ±1

4

N+M1+M2+M3∑
n=N+M1+M2+1

v2
n and

[
∂Re[h±(x, t,v)]

∂x
=

N+M1+M2+M3∑
n,m=1

∂K̃±nm

∂x
vmvn � 0

]
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for all v, functions rank±(x) are increasing step functions assuming only integer values. But

h±(x, t,v) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x

N∑
n=1

4λ2
n + 1

8λ2
n

v2
n ± 1

4

N+M1+M2+M3∑
n=N+1

e−2iϕnv2
n

for x < 0 and |x| sufficiently large,

x

N∑
n=1

4λ2
n + 1

8λ2
n

v2
n +

1

4

N+M1+M2∑
n=N+1

e2An−2iϕnv2
n

+
1

4

N+M1+M2+M3∑
n=N+M1+M2+1

(
e2An−2iϕn ± e−2iϕn

)
v2

n,

for x > 0 and |x| sufficiently large.

Consequently rank+(x) may only assume values M1,M1 +1, . . . , N +M1 +M2 and must make
N + M2 unit jumps at some points denoted correspondingly by x1+(t), x2+(t), . . . , xN+M2 +(t)

and rank−(x) may only assume values M2,M2 + 1, . . . , N + M1 + M2 and must make N + M1

unit jumps at some points denoted correspondingly by x1−(t), x2−(t), . . . , xN+M1 −(t). The
points x1+(t), x2+(t), . . . , xN+M2 +(t), x1−(t), x2−(t), . . . , xN+M1 −(t) are the 2N + M1 + M2

singular points of f (x, t) given by (2.1). For some values of t, some of these points may
confluence.

Appendix C. Proof of (2.5)

To prove (2.5) note that as λm → λm−1

Bm ± sin 2�m

2λm

+ Bm−1 ± sin 2�m−1

2λm−1
− 2K± m−1m → λmβm + λm−1βm−1 − 2

d(λmγ(λm))

dλm

,

(C.1)

and(
Bm−1 ± sin 2�m−1

2λm−1

) (
Bm ± sin 2�m

2λm

)
− K±2

m−1 m

Bm ± sin 2�m

2λm
+ Bm−1 ± sin 2�m−1

2λm−1
− 2K± m−1 m

→= β̃m + ξ +
1

4λ2
m

η ± sin 2�m−1

2λm−1
, (C.2)

where

β̃m−1 =
βm βm−1 −

[
d(λmγ (λm))

dλm

]2

βm + βm−1 − 2 d(λmγ (λm))

dλm

.

To simplify the proof of (2.5) assume, without loss of generality, that m = N. Then,

lim
λN →λN−1

d2

dx2
ln detK± = lim

λN→λN−1

d2

dx2
ln det CK±C∗ = lim

λN→λN−1

d2

dx2
ln det⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 K±12 · · · K±1N−2 K±1N−1 K±1N − K±1N−1

K±12 B2 · · · ...
...

...

...
...

...
...

...

K±1N−2 · · · BN−2 K±N−2N−1 K±N−2N − KN−2N−1

K±1N−1 − (K±1N−K±1N−1)(K±N−1N −BN−1)

BN +BN−1−2K±N−1N
· · · BN−1BN−K2

±N−1N

BN +BN−1−2K±N−1N
O

K±1N −K±1N−1 · · · K±N−1N − BN−1 BN + BN−1 − 2K±N−1N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where C∗ is the adjoint of C given by

C =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0

I(N−2)×(N−2)

...
...

0

0 · · · 0
(τ

N
−D±N−1N )

τ
N

+B
N−1 −2K±N−1N

(B
N−1 −K±N−1N )

τ
N

+τ
N−1 −2K±N−1N

0 · · · 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎠
and I(N−2)×(N−2) is the (N − 2)-dimensional identity matrix. Taking limit as λ

N
→ λ

N−1 and
using (C.1), (C.2), we obtain (2.5).
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